Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metamorphic InAlAs/InGaAs/InAlAs/GaAs HEMT heterostructures containing strained superlattices and inverse steps in the metamorphic buffer

Identifieur interne : 000021 ( Russie/Analysis ); précédent : 000020; suivant : 000022

Metamorphic InAlAs/InGaAs/InAlAs/GaAs HEMT heterostructures containing strained superlattices and inverse steps in the metamorphic buffer

Auteurs : RBID : Pascal:13-0107023

Descripteurs français

English descriptors

Abstract

Metamorphic InxAl1-xAs buffer design features influence on electrophysical and structural properties of the heterostructures was investigated. Two types of MHEMT heterostructures In0.70Al0.30As/ In0.76Ga0.24As with novel design contained inverse steps or strained superlattices were grown by MBE on GaAs substrates. Electrophysical properties of the heterostructures were characterized by Hall measurements, while the structural features were described with the help of different transmission electron microscopy techniques. The metamorphic HEMT with strained superlattices inserted in the metamorphic buffer had the smoother surface and more defect-free crystal structure, as well as a higher Hall mobility, than metamorphic HEMT with inverse steps within the metamorphic buffer.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0107023

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Metamorphic InAlAs/InGaAs/InAlAs/GaAs HEMT heterostructures containing strained superlattices and inverse steps in the metamorphic buffer</title>
<author>
<name sortKey="Galiev, G B" uniqKey="Galiev G">G. B. Galiev</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute of Ultrahigh Frequency Semiconductor Electronics, Russian Academy of Science</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vasil Evskii, I S" uniqKey="Vasil Evskii I">I. S. Vasil Evskii</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>National Research Nuclear University "MEPhl"</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pushkarev, S S" uniqKey="Pushkarev S">S. S. Pushkarev</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute of Ultrahigh Frequency Semiconductor Electronics, Russian Academy of Science</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>National Research Nuclear University "MEPhl"</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klimov, E A" uniqKey="Klimov E">E. A. Klimov</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute of Ultrahigh Frequency Semiconductor Electronics, Russian Academy of Science</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Imamov, R M" uniqKey="Imamov R">R. M. Imamov</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>A.V. Shubnikov Institute of Crystallography, Russian Academy of Science</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Buffat, P A" uniqKey="Buffat P">P. A. Buffat</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Ecole Polytechnique Fédérale de Lausanne, Centre Interdisciplinaire de Microscopie Electronique</s1>
<s2>1015</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>1015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dwir, B" uniqKey="Dwir B">B. Dwir</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Ecole Polytechnique Fédérale de Lausanne, Laboratoire de physique des nanostructures</s1>
<s2>1015</s2>
<s3>CHE</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>1015</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Suvorova, E I" uniqKey="Suvorova E">E. I. Suvorova</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>A.V. Shubnikov Institute of Crystallography, Russian Academy of Science</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0107023</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0107023 INIST</idno>
<idno type="RBID">Pascal:13-0107023</idno>
<idno type="wicri:Area/Main/Corpus">001184</idno>
<idno type="wicri:Area/Main/Repository">000909</idno>
<idno type="wicri:Area/Russie/Extraction">000021</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium</term>
<term>Crystal defect</term>
<term>Crystalline structure</term>
<term>Defect structure</term>
<term>Dislocation</term>
<term>Electron microscopy</term>
<term>Gallium arsenides</term>
<term>Hall effect</term>
<term>Hall mobility</term>
<term>Heterostructures</term>
<term>High electron mobility transistor</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Molecular beam epitaxy</term>
<term>Nanostructured materials</term>
<term>Quantum well</term>
<term>Strained superlattice</term>
<term>Surface defect</term>
<term>Transmission electron microscopy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Transistor mobilité électron élevée</term>
<term>Hétérostructure</term>
<term>Superréseau contraint</term>
<term>Epitaxie jet moléculaire</term>
<term>Effet Hall</term>
<term>Microscopie électronique transmission</term>
<term>Microscopie électronique</term>
<term>Défaut surface</term>
<term>Structure défaut</term>
<term>Défaut cristallin</term>
<term>Structure cristalline</term>
<term>Mobilité Hall</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>Aluminium</term>
<term>Dislocation</term>
<term>Puits quantique</term>
<term>Nanomatériau</term>
<term>InAlAs</term>
<term>InGaAs</term>
<term>GaAs</term>
<term>InxAl1-xAs</term>
<term>Substrat GaAs</term>
<term>8530T</term>
<term>8115H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Aluminium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metamorphic In
<sub>x</sub>
Al
<sub>1-x</sub>
As buffer design features influence on electrophysical and structural properties of the heterostructures was investigated. Two types of MHEMT heterostructures In
<sub>0.70</sub>
Al
<sub>0.30</sub>
As/ In
<sub>0.76</sub>
Ga
<sub>0.24</sub>
As with novel design contained inverse steps or strained superlattices were grown by MBE on GaAs substrates. Electrophysical properties of the heterostructures were characterized by Hall measurements, while the structural features were described with the help of different transmission electron microscopy techniques. The metamorphic HEMT with strained superlattices inserted in the metamorphic buffer had the smoother surface and more defect-free crystal structure, as well as a higher Hall mobility, than metamorphic HEMT with inverse steps within the metamorphic buffer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>366</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Metamorphic InAlAs/InGaAs/InAlAs/GaAs HEMT heterostructures containing strained superlattices and inverse steps in the metamorphic buffer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GALIEV (G. B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>VASIL'EVSKII (I. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PUSHKAREV (S. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KLIMOV (E. A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>IMAMOV (R. M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BUFFAT (P. A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>DWIR (B.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>SUVOROVA (E. I.)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Ultrahigh Frequency Semiconductor Electronics, Russian Academy of Science</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Research Nuclear University "MEPhl"</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>A.V. Shubnikov Institute of Crystallography, Russian Academy of Science</s1>
<s2>Moscow</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Ecole Polytechnique Fédérale de Lausanne, Centre Interdisciplinaire de Microscopie Electronique</s1>
<s2>1015</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Ecole Polytechnique Fédérale de Lausanne, Laboratoire de physique des nanostructures</s1>
<s2>1015</s2>
<s3>CHE</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>55-60</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000182557460120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0107023</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Metamorphic In
<sub>x</sub>
Al
<sub>1-x</sub>
As buffer design features influence on electrophysical and structural properties of the heterostructures was investigated. Two types of MHEMT heterostructures In
<sub>0.70</sub>
Al
<sub>0.30</sub>
As/ In
<sub>0.76</sub>
Ga
<sub>0.24</sub>
As with novel design contained inverse steps or strained superlattices were grown by MBE on GaAs substrates. Electrophysical properties of the heterostructures were characterized by Hall measurements, while the structural features were described with the help of different transmission electron microscopy techniques. The metamorphic HEMT with strained superlattices inserted in the metamorphic buffer had the smoother surface and more defect-free crystal structure, as well as a higher Hall mobility, than metamorphic HEMT with inverse steps within the metamorphic buffer.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Transistor mobilité électron élevée</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>High electron mobility transistor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Transistor movibilidad elevada electrones</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Superréseau contraint</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Strained superlattice</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Superred forzada</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Effet Hall</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Hall effect</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Efecto Hall</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Microscopía electrónica transmisión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Microscopie électronique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electron microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Microscopía electrónica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Défaut surface</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Surface defect</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Defecto superficie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Structure défaut</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Defect structure</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Défaut cristallin</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Crystal defect</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Defecto cristalino</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Structure cristalline</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Crystalline structure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estructura cristalina</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Mobilité Hall</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Hall mobility</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Movilidad Hall</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Aluminium</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Aluminio</s0>
<s2>NC</s2>
<s2>FR</s2>
<s2>FX</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Dislocation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Dislocation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Dislocación</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Puits quantique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Quantum well</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Pozo cuántico</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>InAlAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>InxAl1-xAs</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>8530T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>084</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000021 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000021 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0107023
   |texte=   Metamorphic InAlAs/InGaAs/InAlAs/GaAs HEMT heterostructures containing strained superlattices and inverse steps in the metamorphic buffer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024